19 research outputs found

    A review of compensation topologies and control techniques of bidirectional wireless power transfer systems for electric vehicle applications

    Get PDF
    Owing to the constantly rising energy demand, Internal Combustion Engine (ICE)-equipped vehicles are being replaced by Electric Vehicles (EVs). The other advantage of using EVs is that the batteries can be utilised as an energy storage device to increase the penetration of renewable energy sources. Integrating EVs with the grid is one of the recent advancements in EVs using Vehicle-to-Grid (V2G) technology. A bidirectional technique enables power transfer between the grid and the EV batteries. Moreover, the Bidirectional Wireless Power Transfer (BWPT) method can support consumers in automating the power transfer process without human intervention. However, an effective BWPT requires a proper vehicle and grid coordination with reasonable control and compensation networks. Various compensation techniques have been proposed in the literature, both on the transmitter and receiver sides. Selecting suitable compensation techniques is a critical task affecting the various design parameters. In this study, the basic compensation topologies of the Series-Series (SS), Series-Parallel (SP), Parallel-Parallel (PP), Parallel-Series (SP), and hybrid compensation topology design requirements are investigated. In addition, the typical control techniques for bidirectional converters, such as Proportional-Integral-Derivative (PID), sliding mode, fuzzy logic control, model predictive, and digital control, are discussed. In addition, different switching modulation schemes, including Pulse-Width Modulation (PWM) control, PWM + Phase Shift control, Single-Phase Shift, Dual-Phase Shift, and Triple-Phase Shift methods, are discussed. The characteristics and control strategies of each are presented, concerning the typical applications. Based on the review analysis, the low-power (Level 1/Level 2) charging applications demand a simple SS compensation topology with a PID controller and a Single-Phase Shift switching method. However, for the medium- or high-power applications (Level 3/Level 4), the dual-side LCC compensation with an advanced controller and a Dual-Side Phase-Shift switching pattern is recommended.Web of Science1520art. no. 781

    An empirical survey on wireless inductive power pad and resonant magnetic field coupling for in-motion EV charging system

    Get PDF
    EVs are the recent emerging automotive technology in the transportation sector to reduce the CO2 emission from the internal combustion engine. The issues in EVs technology development are battery tube capacity, heavy-size batteries, fast charging, and safe charging infrastructure. The dynamic wireless charging technology shows a suitable alternative to address the charging system-related issues in EV. However, a limited number of review studies are conducted to specifically address the wireless charging pad design challenges. The wireless inductive power pad and magnetic coupling circuit design are the main factors to decide the performance of the DWPT system. This review analyzes the current developments and challenges associated with wireless charging pad design. Further, this study investigates the potential parameters which improve the performance of a DWPT system to increase the distance traveled (mileage). First, this paper discusses WRIPT technology for DWPT EV charging application, and several parameters affecting the PTE are examined. Also, the aids factors considered for designing the DWPT power pad and different magnetic resonance coupling topologies are presented. In addition, the performance evaluation of the WRIPT power pad, with in-motion testing from the major findings in earlier studies is discussed. Finally, the challenges and opportunities of the WRIPT power pad for in-motion EV charging applications are also addressed. The current state of the art of DWPT and its future directions to make DWPT EV charging systems a full-fledged method are highlighted.Web of Science114693466

    A comprehensive review on various non-isolated power converter topologies for a light-emitting diode driver

    Get PDF
    Light-emitting diode (LED) lighting applications aided by an electronic power control have become very attractive in the recent years. For LED lighting applications, it is essential to design a converter with single/multi-output for handling multiple loads. As the LED load is more sensitive to the change in input/converter parameters, it is necessary to regulate the current concerning the design specifications. In this paper, several LED topologies are reviewed with a focus on power density, single/multi-load operation, size, and reliability. Several converter topologies are reviewed and compared in terms of power rating, number of semiconductor switches, isolation, and efficiency. Various modulation techniques used for dimming control are described in brief. The salient features of each converter topology are discussed with the power rating and application for which the topology can be preferred. So, the selection of the power factor correction (PFC) and low source side harmonics converter topology is presented. This paper will be helpful to the researchers who are working on the development of LED drivers

    Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes

    No full text
    In the current scenario, power electronic device-based induction heating (IH) technologies are widely employed in domestic cooking, industrial melting and medical applications. These IH applications are designed using different converter topologies, modulation and control techniques. This review article mainly focuses on the modelling of half-bridge series resonant inverter, electrical and thermal model of IH load. This review also analyses the performance of the converter topologies based on the power conversion stages, switching frequency, power rating, power density, control range, modulation techniques, load handling capacity and efficiency. Moreover, this paper provides insight into the future of IH application, with respect to the adaptation of wide band-gap power semiconductor materials, multi-output topologies, variable-frequency control schemes with minimum losses and filters designed to improve source-side power factor. With the identified research gap in the literature, an attempt has also been made to develop a new hybrid modulation technique, to achieve a wide range of power control with high efficiency. A 100 W full-bridge inverter prototype is realised both in simulation and hardware, with various modulation schemes using a PIC16F877A microcontroller. The results are compared with existing techniques and the comparisons reveal that the proposed scheme is highly viable and effective for the rendered applications

    Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy

    Get PDF
    The delivery of electricity employing an electromagnetic field that extends across an intervening region is called a wireless power transfer (WPT). This approach paves the way for electric vehicles (EVs) to use newly available options to reduce their environmental impact. This article is a review that examines the WPT technology for use in electric vehicle applications from both the technical aspect and the environmental impact. This review will attempt to accomplish the following objectives: (1) describe the present state of the technology behind the development and application of a WPT across the transportation industry; (2) substantiate the actual implementation of WPT EV systems; and (3) estimate the functioning of the autonomous system, as well as detect the potential stumbling blocks and openings for enhancement. The most recent advancements and implementation in compensating topologies, power electronics converters, and control techniques are dissected and debated scientifically to improve the system’s performance. To evaluate the performance from a sustainable perspective, energy, environmental, and economic factors are utilized, and at the same time, policy drivers and health and safety problems are researched

    Investigation on Performance of Various Power Control Strategies with Bifilar Coil for Induction Surface Melting Application

    No full text
    In recent years, induction heating applications assisted by electronic power control have been very appealing. For melting applications, induction heating is widely used as it seems to be appropriate and provides higher efficiency, zero pollutants, non-contamination of material, etc. in comparison with conventional heating. The conventional variable frequency control scheme is not sufficient for melting applications because of its high switching loss, low efficiency, and lower heat rate. A superlative control technique is required to control the output power smoothly, for a high heating rate with minimum power loss, and to lower the number of components. In this paper, a capacitorless self-resonating bifilar coil is proposed for induction surface melting applications. The performance of the system in terms of modular losses, heat rate, and efficiency is analyzed for various power methods such as pulse duty cycle control, phase shift control, pulse density modulation control, and asymmetric duty cycle control. An experimental validation is performed for the 1 kW prototype, and the heating rate, efficiency, and modular losses are calculated. The control technique is digitally validated using a PIC16F877A microcontroller with 30 kHz switching frequency. The temperature distribution is analyzed using a FLIR thermal imager. Among the tested methods, pulse density modulation-based control provides smooth and varied power control from 0% to 100% with minimum modular losses. The efficiency of the system is 89% at a rated output power and is greater than 85% for pulse density modulation control with a fast heating rate

    Single Source Multi-Frequency AC-AC Converter for Induction Cooking Applications

    No full text
    In recent years, induction heating (IH) applications aided by electronic power control have gained significance. Particularly, for cooking applications, an appropriate control technique is required to feed power from a single source to multiple loads with minimum switching losses. Additionally, when multiple loads are used, it requires independent control and operation for each of the loads. The main idea of this work is to develop a single-stage AC-AC converter topology to feed power to multiple loads independently with a single source, with a reduced number of switching devices and with minimum switching losses. The proposed topology uses a frequency bifurcation concept to feed power to multiple loads by placing the transmitting coil and work coil at a distance of 3 cm. The source is resonated at a 25 kHz switching frequency, with the designed bifurcated frequencies of 20 kHz and 33 kHz. The resonant capacitors are appropriately chosen to operate at those frequencies. For real-time applications, simultaneous and independent power control are inevitable in multi load-fed IH applications. This is achieved through a pulse density modulation scheme with minimum switching losses. The simulation of the proposed system is performed in MATLAB/Simulink, and also the 1 kW system is validated using a PIC16F877A microcontroller. The real-time thermal variation in the load is also recorded using a FLIR thermal imager. The experimental and simulation results are observed, and the obtained efficiency of the system is plotted for various duty cycles of pulse density modulation control

    Analysis of Higher Dimensional Converter Using Graphical Approach

    No full text
    The main intention of this paper is to propose a methodology for deriving a reduced-order model from a complex n-dimensional system. The mathematical model for a voltage-lift-based quadratic high-gain dc-dc converter is proposed with a reduced-order model in continuous conduction mode (CCM). The chosen topology amalgamates voltage-lift cells with a quadratic boost topology to obtain improved voltage gain. The operating principle of the configuration with steady-state analysis is discussed in CCM. The state-space averaging procedure and switching flow graph (SFG) obtain the open-loop performance to design a suitable controller for the converter. To reduce the state variables and simplify the modelling, reduced-order modelling is carried out for the topology. Additionally, the pole clustering method minimizes the converter’s order. The impact of parameter variation with the pole-zero location is discussed elaborately. The Ziegler-Nicholas tuning technique attains the PI controller’s proportional and integral time constant. The closed-loop response presents better step response output than the open-loop response. Time-domain parameters are compared for open-loop and closed-loop to validate the controller. Lastly, a 50 W prototype is used for evaluating the converter’s ability at a steady state

    Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach

    No full text
    Partial shading has a negative impact on photovoltaic systems by forcing the connected modules to generate lower power, creating severe unexpected power losses. To resolve this issue, numerous solutions have been proposed, among which configuration modification has recently attracted a greater audience. The preliminary approach to module reconfiguration was based on the alteration of electrical connections through switches, which introduces lag due to the large number of switches and sensors, complex algorithms, and impractical application. Hence, static techniques are considered to be a cost-effective, low-complexity and easy-to-adopt solution for efficiently reducing the losses due to shading. Hence, this paper proposes a two-step module replacement approach that is validated under multiple partial shading conditions, and the performance is compared with various conventional and hybrid configurations and a static electrical reconfiguration technique using mathematical analysis, comparative parameters and power curves analysis. The validation was performed using the MATLAB platform for two system sizes—6 × 6 and 18 × 3—proving its applicability for arbitrary system sizes. On the basis of the depth investigation, an average power increase of 17.49%, 14.47%, and 14.12% for the two-step approach compared to the conventional, hybrid and electrical reconfiguration was observed in the partial shading cases considered

    Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach

    No full text
    Partial shading has a negative impact on photovoltaic systems by forcing the connected modules to generate lower power, creating severe unexpected power losses. To resolve this issue, numerous solutions have been proposed, among which configuration modification has recently attracted a greater audience. The preliminary approach to module reconfiguration was based on the alteration of electrical connections through switches, which introduces lag due to the large number of switches and sensors, complex algorithms, and impractical application. Hence, static techniques are considered to be a cost-effective, low-complexity and easy-to-adopt solution for efficiently reducing the losses due to shading. Hence, this paper proposes a two-step module replacement approach that is validated under multiple partial shading conditions, and the performance is compared with various conventional and hybrid configurations and a static electrical reconfiguration technique using mathematical analysis, comparative parameters and power curves analysis. The validation was performed using the MATLAB platform for two system sizes—6 × 6 and 18 × 3—proving its applicability for arbitrary system sizes. On the basis of the depth investigation, an average power increase of 17.49%, 14.47%, and 14.12% for the two-step approach compared to the conventional, hybrid and electrical reconfiguration was observed in the partial shading cases considered
    corecore